746 T	TANTA UNIVERSITY FACULTY OF SCIENCE				
		DEPARTMENT OF PHYSICS			
	EXAM	EXAMINATION FOR SENIORS (FOURTH YEAR) STUDENTS OF MATERIAL SCIENCE			
	COURSE TITLE:	ELECTRON MICROSCOPY		COURSE CODE: MS4123	
DATE:	23\12\2017	TERM: FIRST	TOTAL ASSESSMENT MARKS:100	TIME ALLOWED: 2 HOURS	

ANSWER THE FOLLOWING QUESTIONS:

Q1	(<u>25 Marks</u>)		
Writ	e about:		
a)	Mass-thickness contrast in TEM.		(10 Marks)
b	Electro-polishing and mechanical polishing	; in TEM.	(10 Marks)
c)	Importance of vacuum in electron microsco	рру.	(5 Marks)
Q2 ((<u>25 Marks</u>)	••••••	••••••
a)	What are the possible processes that might l	happen when an energe	tic electron
	beam interacts with a solid? Enhance your a		(10Marks)
b)	Write about X-ray wavelength-dispersive sp	_	
	What are the disadvantages of TEM	17	(5 Marks)
b	List the possible defects of electron lenses a		(10 Marks) one of them? (10 Marks)
Q4- (Choose the correct answer	(<u>30 Marks, 3 mark</u>	s each)
1)	A scanning electron microscope uses to prod	luce an image.	
	A) Negatively charged particlesC) Atoms	B) Positive charged parD) Neutral particlee	ticle
2)	Increasing the accelerating voltage in TEM leads to A) A reduction in the scattering cross section of ele B) An increase in the electron wavelength C) A reduction in spatial resolution D) A reduction of penetration depth in the sample	ectrons	

وحدة ضمان الجودة © كالمناة خلف الصفحة كلية العلوم - جامعة علنما المناقل فاقى الأسئلة خلف الصفحة المناقلة المناقلة المناقلة و GUALITY ASSURANCE UNIT و FACULTY OF SCIENCE - TU

جامعة طنطا كرو مو رد دم كلية العلوم و الفيزياء

الزمن: ساعتان

Answer the following:

- 1- How do you determine the crystal structure of BaTio3 ceramic?
- 2- How do you estimate the lattice parameters of the cubic and tetragonal unit cell?
- 3- Explain the hysteresis loop of BaTio3 ceramic.
- 4- Write a short note about the thermal conductivity of ceramic.

[10Marks]

200 x	TANTA UNIVERSITY- Faculty of Science -Department of Physics					
	EXAM FOR SENIORS STUDENTS OF MATERIALS SCIENCE					
	COURSE TITLE Mater		Materials Design	COURSE CODE: MS4121		
DATE:	30- 12 - 2017	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED 2	HOURS	
First Que	estion:					
1- List th	e thermal protec	tion system de	esign requirements.		[15Marks	
2- Write	short notes abou	it material sele	ection for integrated circuit pack	kages.	[15Marks	
Second C	Question:					
1- Discus 2- Mentio	ss the biocompa on the required r	tibility during nechanical pr	the Artificial Total Hip Replace operties of the hip joint replaced	ment. d components.	[10Marks] [10Marks]	
Third Qu	<u>iestion:</u>				[30Marks	
1- The su	accessful operati	ion of the Spa	ce Shuttle is dependent on-1-		, tha	
			ecupants from -2			
			th's atmosphere.		+ ,	
•	•		reusable surface insulation (FF	RSI) is employed	on the Space	
			from -3 to - 4 -			
			- -			
			the artificial hip-6	7		
				, ,		
			and -11			
— — ar			leses where the principal disadva			
_ _						
for the	second is -13				_ .	
5- Acetab	oular Cup cons	ists of -14		 -		
insert	that fits within	the cup; this	s cup is fabricated from-15 -			
			onded to the pelvis.			
Forth Qu	•					
Helical sp	pring of length		deflaction (θ) , cross section dia on by torque (T) , find	ameter (d), modu	lus of rigidit	
					[10Marks]	
1- 1110 511	stiffness of the spring $(\frac{F}{8})$, δ is axial deflection of spring. [10Marks]					

EXAMINER

2- Yield strength of spring.

ڪلية العلوم - BEST WISHES - كالية العلوم - QUALITY ASSURANCE UNIT

علوممواد

		J .)	· ·		
		TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS			
EXAMINATION FOR SENIORS (FORTH LEVEL) STUDENTS OF MATERIAL SCIENCE (SEMES)					
	000				
COURSE TITLE: DATE:1 JANUARY 2018	TERM: SUMMER	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS		
First question:	Ans	swer The Following:	{25 Marks} (12 Marks)		
·	erials. 2- Bulk	materials. 3- Grain size. 4- qua	•		
B) What are the advange and nanotechnology and n	ntages of using nicrotechnology	(nanomaterials comparing to b v.	(13 Marks)		
Second question:			{25 Marks}		
A) Write short not The unique size	tes on the follov e-dependent pr	ving: operties of nanomaterial (give e	(10 Marks) examples).		
B) Discuss the fab an example), d	orication metho eclare your ans	ds (top down-bottom up) of the wer by drawing.	nanomaterials; (give (15 Marks)		
Third question:			{20 Marks}		
A) Discuss briefly	the methods fo	or characterization of nanomate	erials. (10 Marks)		
B) Discuss the ap	plication of nar	nomaterials in (Information and	l communications). (10 Marks)		
Fourth question: Discuss and s	how the advant	age of using nanotechnology of	{30 Marks} the following fields:		
a) Diseases treat			(10 Marks)		
b) Environment			(10 Marks)		
		*			

C) Clean Energy.

Examiners Prof. Talaat M. Meaz Prof. Samia Saafan

(10 Marks)

TANTA UNIVERSITY FACULTY OF SCIENCE CHEMISTRY DEPARTMENT

FINAL EXAM FOR SENIOR STUDENTS (CHEMISTRY SECTION)

COURSE TITLE:

INDUSTRIAL CHEMISTRY (CH4123)

TIME ALLOWED:

DATE: JANUARY 06, 2018

TERM: **FIRST**

TOTAL ASSESSMENT **MARKS: 100**

2 HOURS

Answer the Following Questions:-

1-(a)- Define each of the following terms:-

(6 Marks)

(Crude oil – Penicillin – LPG - Drying oils - Natural gas- Octane number)

(b)- Briefly discuss:-

(12 Marks)

- i) Properties of detergents.
- ii) The non-hydrocarbon compounds in petroleum.
- iii) Aromatic products and Chemical reactions carried out on benzene.

2-(a) Use the chemical equations to describe the following:-

(20 Marks)

- i) Manufacture of alpha-eucaine.
- ii) Synthesis of Tramadol.
- iii)Fries rearrangement of phenolic esters.
- iv) Synthesis of Piperocaine.

(b)- Compare between:-

(12 Marks)

- i) Mordant and Reactive dyes with examples.
- ii) Gasoline and Diesel Oil.
- iii) Acid and Basic dyes with examples.

3-(a) Write the Manufacture equations for:

(4Marks)

- i) POX for H₂ production
- ii) H₂O₂

(b) Give reasons for the following statements:

(20Marks)

- i) White phosphorous used in military.
- ii) Addition of V₂O₅ catalyst in manufacture of H₂SO₄.
- iii) Graphite is a low density.
- iv) Using carbon in manufacture of white phosphorus.

Please turn over

Date

Tanta University Faculty of Science Physics Department

 First Term Exam (Level 4, Materials Science)		
Course Title	Microprocessing of Materials	Course Code: MS4131
11 / 1 / 2018	Total Assessment: 100 Marks	Time Allowed: 2 hours

Please answer all the following questions:

First question: { 25 Marks }

- 1- Compare briefly between 3 different techniques for a thin film deposition. (15 Marks)
- 2- Show graphically only the working principles of (a) the focus ion beam (FIB) milling and (b) electron beam (EB) lithography as methods for nanofabrication. (10 Marks)

Second question: { 30 Marks}

- 1- What we mean by nanoimprint lithography? Compare between thermal imprint and step-flash as two nanoimprint methods. (15 Marks)
- 2- Show graphically only the general sequence of processing steps for a typical photolithography process. (10 Marks)
- 3- Show graphically only the difference between positive and negative photoresists. (5 Marks)

Third question: { 30 Marks}

- 1- If you are requested to fabricate silicon V-grooves show two possible fabrication methods and declare the advantages and disadvantages of each method. (10 Marks)
- 2- In the fabrication process of Si micro/nano structures, is it necessary to expect and control the thickness of SiO₂? Why? (10 Marks)
- 3- Describe graphically, the basic idea of plasma etching of silicon using carbon tetrafluoride (CF₄) (10 Marks)

Fourth question: { 15 Marks}

- 1- How you can predict the photoresist thickness and why it is important predict and control the photoresist thickness? (10 Marks)
- 2- Show graphically a method enables you to grow silicon nanowires on the surface of a silicon wafer. (5 Marks)

●金銀 With my best wishes, Examiner: Dr Salah E. El-Zohary ●金銀

Tanta University Faculty of Science Physics Department

	First Term Exam (Level 4, Mate	erials Science)
Course Title	Microprocessing of Materials	Course Code: MS4131

Date 11 / 1 / 2018 Total Assessment: 100 Marks Time Allowed: 2 hours

Please answer all the following questions:

First question: { 25 Marks }

- 1- Compare briefly between 3 different techniques for a thin film deposition. (15 Marks)
- 2- Show graphically only the working principles of (a) the focus ion beam (F1B) milling and (b) electron beam (EB) lithography as methods for nanofabrication. (10 Marks)

Second question: { 30 Marks}

- 1- What we mean by nanoimprint lithography? Compare between thermal imprint and step-flash as two nanoimprint methods. (15 Marks)
- 2- Show graphically only the general sequence of processing steps for a typical photolithography process. (10 Marks)
- 3- Show graphically only the difference between positive and negative photoresists. (5 Marks)

Third question: { 30 Marks}

- 1- If you are requested to fabricate silicon V-grooves show two possible fabrication methods and declare the advantages and disadvantages of each method. (10 Marks)
- 2- In the fabrication process of Si micro/nano structures, is it necessary to expect and control the thickness of SiO₂? Why? (10 Marks)
- 3- Describe graphically, the basic idea of plasma etching of silicon using carbon tetrafluoride (CF_4) (10 Marks)

Fourth question: { 15 Marks}

- 1- How you can predict the photoresist thickness and why it is important predict and control the photoresist thickness? (10 Marks)
- 2- Show graphically a method enables you to grow silicon nanowires on the surface of a silicon wafer. (5 Marks)

1 7	TANTA UNIVERSITY- Faculty of Science - Department of Physics				
	EXAM FOR 4 TH YEAR STUDENTS				
JONS	COURSE TITLE:	TITLE: Detectors and Accelerator Physics		COURSE CODE: PH4163	
DATE:	14 JAN 2017	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS	

Answer the following questions

Question one (30 points)

A- If a proton has a total energy of 1 TeV, what is its value of β ? (Hint: $m_p = 1.673 \times 10^{-30} \text{ g}$)

B- Put () or (x) and then discuss why you choose your answer:

- 1- The detector efficiency can be classified into two types of efficiency
- 2- The advantage of ionization chamber detectors is their dead time
- 3- There are three possibilities for the wall effect in the BF₃ tube
- 4- The overall gain of a PM depends on the secondary emission factor δ only
- 5- The linearity of a PM depends strongly on the type of dynode configuration and the current in the tube only.
- 6- A high capacitance and a high frequency reduce the current dependence in the Cockcroft-Walton generator
- 7- Cyclotron is reasonable for accelerating electrons to high energies
- 8- In Betatron, the maximum energy for electrons is 300 MeV
- 9- In synchrotrons, focusing magnets are used.
- 10- The advantage of SSB detectors is their sensitivity to light
- 11- The length of the tube is the same in Wideroe's tube

Please turn the page for the other questions